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THE UNORIENTED COBORDISM CLASSES
OF COMPACT FLAT RIEMANNIAN MANIFOLDS

MARC W. GORDON

This paper provides partial information on the conjecture that all compact
flat riemannian manifolds are boundaries. The main result is

Theorem 3.1. If ¢ is a finite 2-group whose elements of order two lie in its
center, then any compact flat riemannian manifold with holonomy group ¢ is a
boundary.

Our approach is the study of certain canonical Z-actions called transla-
tional involutions. These involutions arise as the projections of translations of
R”. Theorem 3.1 is proved by first showing that the group of translational
involutions has no stationary point and then appealing to the following
well-known theorem of Conner and Floyd.

Theorem (Conner & Floyd [3, p. 76, Theorem 30.1). If Z¥ acts differentia-
bly on the closed n-manifold M" without stationary points, then M" is an
unoriented boundary.

In §1 we prove Lemma 1.2 which relates the assumption that the group of
translational involutions does have a stationary point to the two-rank of the
holonomy group. Immediate corollaries provide, in §2 bounds for each finite
2-group ¢ on both the dimension and the first betti number of a nonbounding
flat manifold with holonomy group ¢.

The author wishes to thank Leonard Charlap, his advisor, for suggesting
this problem to him and to thank Chih-Han Sah for uncountably many
helpful conversations.

1. Translational involutions _

Recall that an n-dimensional compact flat riemannian manifold is the
quotient of R” by the action of a torsion-free Bieberbach group (see Charlap
[1]), i.e., by the action of a subgroup = of the group of rigid motions of R"
satisfying the following two defining conditions: (i) # contains no elements of
finite order, and (ii) there is an exact sequence

¢)) 0—>L—>'rr—p-)¢—>0
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in which L is an n-dimensional lattice of pure translations of R" and where ¢
is a finite group which is isomorphic to the holonomy group of the quotient
R”/@. We note that the action of ¢ on L induced by conjugation is faithful, a
fact which will be crucial to our arguments. Henceforth L will be viewed as a
¢-module via this action.

One knows (see Charlap and Vasques [2]) that for each torsion-free
Bieberbach group [1], the set (L/2L)* of ¢-invariant elements of L/2L is
isomorphic to a subgroup of the group of affinities of R”/ 7. Geometrically,
this action is realized as the set of projections from R" to R"/x of the
translations

(2) x—>x+1/20

where v ranges over all lifts to L of elements of (L/2L)?. Since (L/2L)* is
elementary abelian, this action is a group of involutions.

Definition 1.1. The ZX-action determined by (L/2L)? is called the group
of translational involutions and is denoted by I(w). For W € (L/2L)%, the
corresponding involution is denoted by I(W).

We adopt the convention that elements of « are represented by pairs (7, o)
where T is a translation and ¢ € O(n). For x € R”,

(T,o)-x=T+o-x.
The next lemma investigates the assumption that a subgroup of I(«) has a
stationary point.
Lemma 1.1. Let G be a nontrivial subgroup of (L/2L)*, and suppose that
the subgroup of I(w) which G determines has a stationary point x. Then there is
an injective function s: G — a, such that the composed map

3) J=pes:G—o

is an injective homomorphism. Further, the function s may be chosen to be of the
Jorm,

@ s(W) = (1/20, ay),

where v is some lift of W to L.

Proof. By change of coordinates in R” we may assume that the origin
covers the stationary point x. Choose a list W,, i = 1, p, of the elements of G.
Let v; € L such that translation by 1/2v, projects to the involution I(W)). x
stationary implies that for each i there exists a unique element (T}, 6;) of =
such that

0+ 1/20, =(T, 0,)-0.
Note that 1/2v, = T; Vi. One defines the map s by s(w;) = (T}, 0)) s is
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injective because 1/2v; # 1/2v;. We next show that J is an injective homo-
morphism. Note that J(W)) = p((T, 0;)) = a,.

J is injective: o; = g, i 7 j, implies that 7; — T, is an element of L because
by (1), any two translations associated to an element of ¢ differ by a lattice
point. Hence from the above, 1/2v; — 1/2¢; is in L. But then, I(W)) equals
I(W)). This is impossible because W, # W,. Thus J is injective.

J is a homomorphism: Since 1/2v, = T, for all i, we compute that

(T 0)- (T}, 0)) = (1/20, + 1/2v; + 1, 0,0))

for some / € L (since v; is ¢-invariant mod 2L). Clearly, translation by
1/2(v; + v) projects to I(W; + W)). Since any two lifts of an element of
(L/2L)? to L differ by an element of 2L, if 1/2v, was the above previously
chosen translation representing W, + W, then 1/20, — 1/2(v; + v) is in L.
Hence 1/2v, is a translation associated to o,0;. Further, g,0; is the only

element of ¢ with translation 1/2v,, because = acts freely on R”. Thus

J(W, + W) = 0,0, = J(W)- J(W)).

2. Two general theorems

In this section the following two theorems are proved.

Theorem 2.1. Let R"/w be a ¢-manifold where ¢ is a finite 2-group.
Suppose that the first betti number of R" /w exceeds the 2-rank of ¢. Then R" is
a boundary.

Theorem 2.2. Let R"/ 7 bea ¢-manifold where ¢ is a finite 2-group of order
2% and of 2-rank k. Then if n is greater than k - 2°, R” /7 is a boundary.

Lemma 2.1. If the Z,-dimension of (L/2L)* exceeds the 2-rank of ¢, then
R" /@ is a boundary.

Proof. Dimg,((L /2L)*) greater than the 2-rank of ¢ implies that the
homomorphism J of Lemma 1.1 cannot be injective. Thus /(7) has no
stationary point, so the Lemma follows from Theorem 30.1 of Conner and
Floyd [3].

Proof of Theorem 2.1. If the first betti number B, of R"/« equals &, then
L contains a k-dimensional trivial ¢-submodule (see Wolf [7, p. 81]). Hence
the Z,-dimension of (L/2L)* is no less than B,, and so is strictly greater than
the 2-rank of ¢. Now use Lemma 2.1.

Proof of Theorem 2.2. The theorem will follow from Lemma 2.1, once it
has been shown that the Z,-dimension of (L/2L)* is greater than or equal to
n/2?. Let ¢ be a nontrivial element of order two in the center of ¢. As a
og-module, L/2L is the direct sum of trivial factors and Z,-group rings. Since



84 MARC W, GORDON

the action of Z, on its Z,-group ring has a unique fixed point, dim, (L/2L)"
> n/2. Now (L/2LY is a ¢-module because o is in the center of ¢. Thus we
may repeat this argument for ¢/{o) and so on.

3. The main theorem

A finite 2-group all of whose elements of order two lie in its center will be
called central. The main result is

Theorem 3.1. If R" /7 is a ¢p-manifold where ¢ is a central 2-group, then
R" /7 is a boundary .

Corollary 3.1. If R"/w is a ¢-manifold where ¢ is a finite group whose
Sylow 2-subgroups are central, then R" /7 is a boundary.

Proof. Let ¢ be a Sylow 2-subgroup of ¢, and let #’ be its inverse image in
7. The holonomy group of R"/#’' is ¥, so R"/#’ bounds by Theorem 3.1.
Since the index of #’ in «# is odd, R"/#" is an odd-fold covering space of
R"/w. But odd-fold -covers preserve Stiefel-Whitney numbers, so R"/#
bounds as well (see Milnor & Stasheff [6]). q.e.d.

The proof of Theorem 3.1 consists in using purely algebraic facts (Proposi-
tions 3.1 and 3.2 below) concerning the cohomology of central 2-groups with
coefficients in a lattice to deduce that a certain subgroup of the group of
translational involutions has no stationary point. Specifically it will be shown
that the assumption that there exists a stationary point implies that = contains
an element of order two. The theorem then follows by contradiction and
Theorem 30.1 of Conner and Floyd [3].

We turn next to the statements of Propositions 3.1 and 3.2, but postpone
their proofs until these propositions have first been applied to proving
Theorem 3.1.

A pure submodule A of a ¢-module M will be said to be maximal if there
exists no ¢-module B such that 4 @ B is isomorphic to a pure submodule of
M.

Lemma 3.1. Every nonzero finitely generated ¢-module contains a nonzero
maximal semisimple submodule.

Proof. Obvious.

Definition 3.1. Let A be a k-dimensional semi-simple ¢-module where ¢ is
an elementary abelian 2-group of rank k. An extension

&) 0—>A—>G—>¢—>O

will be said to be proper if it can be obtained from the following construction.
Let J be an isomorphism from 4 /24 onto ¢. Let s: 4 /24 — A be a section
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of A/24 in A, i.e., s is an injective function such that r o s = id, ,,, where r:
A > A/24 is the projection homomorphism. Define g in
Hom,(B,(¢); 1/24), the group of one-dimensional ¢-cochains with coeffi-
cients in 1/24, by

(6 gla) = 1/2s(J ().

Since the image of dg, the coboundary of g, is actually contained in A4, &g is
an element of Z%(¢; 4), the group of inhomogeneous ¢-cocycles with coeffi-
cients in 4. Thus g determines an extension of 4 by ¢. (5) is proper if it may
be obtained from some such g in this way.

Proposition 3.1. Let L be a faithful ¢-module where ¢ is an elementary
abelian 2-group of rank k. Let 0 > A — G — ¢ — 0 be a proper extension, and
let i: A — L be an injective homomorphism of ¢-modules such that: (i) i(A) is
maximal, and (ii)) L/i(A) is semisimple. Let 0 > L > G’ —¢—0 be the
extension determined by this change of coefficients. Then G’ contains an element
of order two.

Proposition 3.2. Let ¢ be a finite central 2-group, and let M be a finitely
generated faithful ¢-module. Let C be a nonzero maximal semisimple ¢-sub-
module, and let C ~ D S, i = 1, k, be a decomposition of C into ¢-irreducible
direct factors. Then for each elementary abelian subgroup G of ¢ of rank at least
k there exist a faithful G-submodule L of M and a semisimple G-submodule A
of L such that:

(a) A is generated (over Z) by precisely those elements of C — 2C which are
¢-invariant mod 2M;

(b) C splits as a G-direct sum, A ® B;

(c) If L' and A’ are the projections of L and A into M/ B, then A’ is maximal
in L' and L'/ A’ is semisimple;

(d) (Ln B)C2B.

Proof of Theorem 3.1. Let 0 > M — 7 — ¢ — 0 be a torsion free Bieber-
bach ‘group with ¢ central. Choose a nonzero ¢-module C in M as in
Proposition 3.2. By condition (a) of Proposition 3.2 the corresponding module
A/2A represents a subgroup of I(w). Assuming that this subgroup has a
stationary point x we conclude from Lemma 1.1 that there is an elementary
abelian subgroup ¢’ of ¢ which is isomorphic to 4/24 via the homomor-
phism J. Assuming that the origin of R” covers the fixed point, J may be
written as p o s where s is defined by (4). Setting g: ¢’ — 1/24 by (6), we
obtain a proper extension,

054-5G->¢ —0.
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Clearly the induced extension

045G —>9¢' >0
is proper. Hence by (c¢) of Proposition 3.2 and Proposition 3.1, the extension

0L -G " >¢' >0
contains an element of order two. Writing G” as the cartesian product
L’ X ¢’ with multiplication given by
@) (w,0)- (W, 1) =(w+ a-w + 8g(a, 1), o7),
we see that the element of order two is of the form

(w, 0) whereo # id.
We have from (7)

(0,id) = (w, 6)> = (w + o - w + 8g(a, 0), id).
Hence o -w + w = -8g(0, ). By condition 4) of Proposition 3.2, in L we
have
o-w+ w=-08g(g,0) + 2b where bisin B.
Since o acts trivially on both ¢ - w + w and 8g(e, 0), it acts trivially on b as
well. This gives
a-(w— b)+ (w— b) =-08g(o, 9).

Thus (w — b, a) is of order two. From this contradiction we see that /(x) has
no stationary point and hence that R"/« is a boundary. This completes the
proof.

Proof of Proposition 3.1. The aim here is to locate an element y in ¢ and
an element x in L such that y- x + x = 8g(y, v). For then, viewing G’ as the
cartesian product L X ¢ with multiplication given by

(0,0)- (w,7) =(v + 0-w + 82(o, 7), o7),
one sees that (-x, ) is of order two.

Since L/ i(A) is semisimple for all x in L, y in ¢, the projection r(y - x + x)
of y-x + x to L/2L may be viewed as an element of i(4)/2i(4). Hence
there is a homomorphism

P : L — Hom(¢, ¢)
defined by
(8) P(x)(v) = J(r(y - x + x)).
Lemma 3.2. In order to prove Proposition 3.1 it is sufficient to show that
there exist x in L and vy in ¢ such that

&) P(x)(v) = J(r(3g(v, v))).
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Proof. It follows from (9) that
vy-x+ x = 08g(y,y) +2w forsomewin L,
so that

Y- (x = w)+ (x —w) = 8(v, v),
since vy acts trivially on 8g(y, v).

Lemma 33. Let M be a faithful semisimple ¢-module where ¢ is an
elementary abelian 2-group of rank k. Then there exist vectors x;,i = 1, k,in M
and a minimal set of generators o;,i = 1, k, of ¢ such that

0" X, = X

(10) YT
=-x, =]

Proof. We omit the details. One proceeds by induction on k. g.e.d.

Since ¢ is elementary abelian, there are direct sum decompositions L /i(4)
~ @ 1, i(4) ~ D t;, where the 1;’s and s are one-dimensional. Since L is
faithful, L/i(A4) ® i(4) is faithful as well. Hence by reindexing if necessary,
we may assume that €, 1, © i(A) is a faithful ¢-module where s equals the
rank of the subgroup i of ¢ of elements which act trivially on i(4). Apply
Lemma 3.3 to ¢ to get vectors x;,: - -, x, in @1, and a minimal set of
generators o;, - - - , o, of { such that ¢, is “dual” to x; in the sense of (10).
Split ¢ as y X K where K is the kernel of the action of ¢ on & 1,. Next apply
Lemma 3.3 to K to get vectors ¢, j = 1, kK — s, in i(4) and a minimal set of
generators 7;, j = 1, k — s, of K such that 7; is “dual” to ¢; in the sense of (10).
Note that g, 4, = £, and 7;- x; = x; , Vi, j. We intend to choose lifts #; of the
x;’s to L such that the homomorphisms P(1;) have a particularly nice form.

Lemma 3.4. There exists lifts u; of the x;s to L such that o;- w; = u; for
i #j, —w; + w, for i = j for some w; € i(A) — 2i(A) and such that 7;- u, = u,
mod i(A) for all i, j.

Proof. Let T, denote the ¢-module generated by A4 together with an
arbitrary lift of x; to L. L /i(A) semisimple implies

T,8 0~ L & (i(4) ® Q).
where 1; is one-dimensional. Let v; be a Z-generator of 7; N L, Clearly,
g, v; = —v,. Since i(A) is maximal, (L, N T) ® i(A) is not pure. Thus there
existy, € T}, a; € i(4),and m € Z — {0, =1} such that m -, = v, + 4, and
u, & (L; N T;) D i(4). Now
o,-u,=-1/mo,+ 1/ma, = -u, +2/ma,

Note that 2/m a;, € A. In fact, 2/m a;, € A — 24 for otherwise, 1/ma, € 4
which implies that 1/m v, is in 7T}, but this contradicts the fact that v, is a
Z-generator of (L; N T,). Setting w; = 2/m q; takes care of the case where
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i = j. For i #j, there is a similar computation: 7, u; =u;, mod i(4), by
construction. q.e.d.

Letting ¢* denote the dual space of ¢ (considered as a Z,-vector space) and
identifying ¢* ® ¢ with Hom(¢, ¢) in the usual way, define &, g in
Hom(¢, ¢) by
(11) hi=o® P(u) (o)), g = 7:/'* ® J(z),

J
where z; is the projection to i(4)/2i(A) of e;.

Let F be the additive subgroup of Hom(¢, ¢) generated by the 4,’s and the
g/’s. Note that F is generated by homomorphisms which are dual to the
generators o; and 7; of ¢. The importance of Lemma 3.4 is that none of the
h’s are the zero homomorphism.

Lemma 3.5. There exist f in F and vy in ¢ — 0 such that f(y) = v.

Proof. The lemma is a special case of the more general fact that if
Xy, * * +, X is a basis of a Z,-vector space V, and if f, - - - , f; are elements
of Hom(¥, V) such that f(x;) # O for all i and f(x;) = O for all i # j, then for
some linear combination of the f’s fixes a nonzero element @ in V. We omit
the details. q.e.d.

Using Lemma 3.5, let f € F, y € ¢ — 0 such that f(y) = y. Factor f as

(12) f=2Zh+2g
and remove any of the 4’s and g’s which send y to zero. Assuming that this
has already been done we see that y contains the factor

2 o; + 2 T
which we write simply as or. From Lemma 3.4 and equations (8) and (11) it
follows that

) = P(Zu)0) + I(r(Ze)),

where the indices i and j correspond to the indices in (12). This last equation
is written more simply as

(13) f(v) = P(x)(0) + J(r(e)).
By Lemma 3.2, the proof is completed with

Lemma3.6. P(x)(y) = J(r(38)(¥, v))-

Proof. From (6), (8), and (13), the equation f(y) = v, and the equation
s-r =id,, mod 24, it follows that

(14) 2g(y) =0-x + x + e + 2w, wherew € i(4).
Since y - e = —e we get

(15) 8(v,v)=1/2(r-(6-x+x)+ o x+x+2(y-w+ w)).
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Since A is a direct sum of one-dimensional y-modules, A4 splits as a direct
sum A+ @ A, where vy acts trivially on 4™ and by negation on 4~. Hence
from (15) it follows that

(16) 8g(y, v) = (a- x + x)*, mod 2i(4).

The lemma now follows from (16) and the easily checked fact that y- x + x
=(o-x+ x)*. qed _

Proof of Proposition 3.2. The following fact will be needed.

Lemma 3.7. Let ¢ be a central group acting on the Q-vector space V.
Suppose that V is ¢-irreducible. If 6 € ¢ is of order 2, then o either acts trivially
onvora-v=-vforallvelV.

Proof. Every vector space of over Q which is a Z,-module is isomorphic
to a direct sum ¥+ @ ¥V, of submodules such thatv € ¥Vt < 0-v = v, and
v € V&< 0 v = —p. Since g is in the center of ¢, ¥+ and V'~ are ¢-modules.
But Vis irreducibleso V= V*tor ¥V = V~. qed.

We next construct the module 4. (C/2C)* ~ @ (S,/2S,)® where by as-
sumption C = @ S;- S; is irreducible, so by the previous lemma each ele-
ment of G either acts trivially or by negation on it. Thus, if we choose a
complete set of representatives of (C/2C)* in C as generated by the union of
complete sets of representatives of each (S,/25;)%, the resulting G-module 4
which they generate is a direct sum of one-dimensional G-submodules and
projects surjectively onto (C/2C)*.

Split M ®, Q as D @ (C ® Q). Lemma 3.7 permits us to reason exactly as
in Lemma 3.3 to find a Z,-basis o;, i = 1, m, of the subgroup H of G of
elements which act trivially on 4 and ¢-irreducible direct summands D,,
i = 1, m, of D such that o, acts trivially on each D, N M excepting D, N M
upon which it acts by negation. By our assumptions each (D, N M) @ C is
not pure, so by the same arguments as in Lemma 3.3 there exists »; € (D; ©
(C ® 2)) N M such that

uj9 j 5& i’
0¥ = . .
kW, =),
where w; € C — 2C. Further, the vectors o5, - - - , g,, may be extended to a
Zybasisoy; v ¢, 0,7, 0, T, where
W=, mod C.

Now w; € C — 2C implies that the projection v; of w; to C/2C is not zero.
Since ¢ is a 2-group, the ¢-module generated by v; has nontrivial intersection
with (C/2C)* — 0. Since this module is just all ¢-linear combinations of v,
there exists f; € Z[¢] such that f(v;) is in (C/ 2C)y* — 0. Sety; = Sf(w) and let
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L = Spang (4 U { y/’s}). Since ¢ is central, o; commutes with f. Hence

(17) -y = flo;- w) = <f(w) + f(w) = -y, + f(w).

Since f(w)) is a lift of f(v;) to C, it is a nonzero element of 4, mod 2C. The
same type arguments give the following equations:

(18) 0 Y = Yp i FS Ty =y 2

where z; is also an element of A mod 2C. Since each element of G acts either
trivially or by pure negation on each S;, S; splits as (4 N S;) © B; where B, is
any Z-complement of 4 N §,. Clearly L N B C 2B. That 4’ is maximal in L’

follows from (17). The semisimplicity of L'/ A’ follows from (17) and (18)
together.
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