THE UNORIENTED COBORDISM CLASSES OF COMPACT FLAT RIEMANNIAN MANIFOLDS

MARC W. GORDON

This paper provides partial information on the conjecture that all compact flat riemannian manifolds are boundaries. The main result is

Theorem 3.1. If ϕ is a finite 2-group whose elements of order two lie in its center, then any compact flat riemannian manifold with holonomy group ϕ is a boundary.

Our approach is the study of certain canonical \mathbb{Z}_2^k -actions called translational involutions. These involutions arise as the projections of translations of \mathbb{R}^n . Theorem 3.1 is proved by first showing that the group of translational involutions has no stationary point and then appealing to the following well-known theorem of Conner and Floyd.

Theorem (Conner & Floyd [3, p. 76, Theorem 30.1]). If \mathbb{Z}_2^k acts differentiably on the closed n-manifold M^n without stationary points, then M^n is an unoriented boundary.

In §1 we prove Lemma 1.2 which relates the assumption that the group of translational involutions does have a stationary point to the two-rank of the holonomy group. Immediate corollaries provide, in §2 bounds for each finite 2-group ϕ on both the dimension and the first betti number of a nonbounding flat manifold with holonomy group ϕ .

The author wishes to thank Leonard Charlap, his advisor, for suggesting this problem to him and to thank Chih-Han Sah for uncountably many helpful conversations.

1. Translational involutions

Recall that an *n*-dimensional compact flat riemannian manifold is the quotient of R^n by the action of a torsion-free Bieberbach group (see Charlap [1]), i.e., by the action of a subgroup π of the group of rigid motions of R^n satisfying the following two defining conditions: (i) π contains no elements of finite order, and (ii) there is an exact sequence

$$(1) 0 \to L \to \pi \xrightarrow{\rho} \phi \to 0$$

Received May 16, 1978.

in which L is an n-dimensional lattice of pure translations of R^n and where ϕ is a finite group which is isomorphic to the holonomy group of the quotient R^n/π . We note that the action of ϕ on L induced by conjugation is faithful, a fact which will be crucial to our arguments. Henceforth L will be viewed as a ϕ -module via this action.

One knows (see Charlap and Vasques [2]) that for each torsion-free Bieberbach group [1], the set $(L/2L)^{\phi}$ of ϕ -invariant elements of L/2L is isomorphic to a subgroup of the group of affinities of R^n/π . Geometrically, this action is realized as the set of projections from R^n to R^n/π of the translations

$$(2) x \to x + 1/2v$$

where v ranges over all lifts to L of elements of $(L/2L)^{\phi}$. Since $(L/2L)^{\phi}$ is elementary abelian, this action is a group of involutions.

Definition 1.1. The Z_2^k -action determined by $(L/2L)^{\phi}$ is called the group of translational involutions and is denoted by $I(\pi)$. For $W \in (L/2L)^{\phi}$, the corresponding involution is denoted by I(W).

We adopt the convention that elements of π are represented by pairs (T, σ) where T is a translation and $\sigma \in O(n)$. For $x \in \mathbb{R}^n$,

$$(T, \sigma) \cdot x = T + \sigma \cdot x.$$

The next lemma investigates the assumption that a subgroup of $I(\pi)$ has a stationary point.

Lemma 1.1. Let G be a nontrivial subgroup of $(L/2L)^{\phi}$, and suppose that the subgroup of $I(\pi)$ which G determines has a stationary point x. Then there is an injective function s: $G \to \pi$, such that the composed map

$$(3) J = \rho \circ s : G \to \phi$$

is an injective homomorphism. Further, the function s may be chosen to be of the form,

$$s(W) = (1/2v, \sigma_W),$$

where v is some lift of W to L.

Proof. By change of coordinates in R^n we may assume that the origin covers the stationary point x. Choose a list W_i , i = 1, p, of the elements of G. Let $v_i \in L$ such that translation by $1/2v_i$ projects to the involution $I(W_i)$. x stationary implies that for each i there exists a unique element (T_i, σ_i) of π such that

$$0+1/2v_i=(T_i,\sigma_i)\cdot 0.$$

Note that $1/2v_i = T_i \ \forall i$. One defines the map s by $s(w_i) = (T_i, \sigma_i) \cdot s$ is

injective because $1/2v_i \neq 1/2v_j$. We next show that J is an injective homomorphism. Note that $J(W_i) = \rho((T_i, \sigma_i)) = \sigma_i$.

J is injective: $\sigma_i = \sigma_j$, $i \neq j$, implies that $T_i - T_j$ is an element of L because by (1), any two translations associated to an element of ϕ differ by a lattice point. Hence from the above, $1/2v_i - 1/2v_j$ is in L. But then, $I(W_i)$ equals $I(W_i)$. This is impossible because $W_i \neq W_j$. Thus J is injective.

J is a homomorphism: Since $1/2v_i = T_i$ for all i, we compute that

$$(T_i, \sigma_i) \cdot (T_i, \sigma_i) = (1/2v_i + 1/2v_i + l, \sigma_i\sigma_i)$$

for some $l \in L$ (since v_j is ϕ -invariant mod 2L). Clearly, translation by $1/2(v_i+v_j)$ projects to $I(W_i+W_j)$. Since any two lifts of an element of $(L/2L)^{\phi}$ to L differ by an element of 2L, if $1/2v_k$ was the above previously chosen translation representing W_i+W_j , then $1/2v_k-1/2(v_i+v_j)$ is in L. Hence $1/2v_k$ is a translation associated to $\sigma_i\sigma_j$. Further, $\sigma_i\sigma_j$ is the only element of ϕ with translation $1/2v_k$, because π acts freely on R^n . Thus

$$J(W_i + W_j) = \sigma_i \sigma_j = J(W_i) \cdot J(W_j).$$

2. Two general theorems

In this section the following two theorems are proved.

Theorem 2.1. Let R^n/π be a ϕ -manifold where ϕ is a finite 2-group. Suppose that the first betti number of R^n/π exceeds the 2-rank of ϕ . Then R^n is a boundary.

Theorem 2.2. Let R^n/π be a ϕ -manifold where ϕ is a finite 2-group of order 2^p and of 2-rank k. Then if n is greater than $k \cdot 2^p$, R^n/π is a boundary.

Lemma 2.1. If the \mathbb{Z}_2 -dimension of $(L/2L)^{\phi}$ exceeds the 2-rank of ϕ , then \mathbb{R}^n/π is a boundary.

Proof. $\operatorname{Dim}_{Z_2}((L/2L)^{\phi})$ greater than the 2-rank of ϕ implies that the homomorphism J of Lemma 1.1 cannot be injective. Thus $I(\pi)$ has no stationary point, so the Lemma follows from Theorem 30.1 of Conner and Floyd [3].

Proof of Theorem 2.1. If the first betti number β_1 of R^n/π equals k, then L contains a k-dimensional trivial ϕ -submodule (see Wolf [7, p. 81]). Hence the Z_2 -dimension of $(L/2L)^{\phi}$ is no less than β_1 , and so is strictly greater than the 2-rank of ϕ . Now use Lemma 2.1.

Proof of Theorem 2.2. The theorem will follow from Lemma 2.1, once it has been shown that the Z_2 -dimension of $(L/2L)^{\phi}$ is greater than or equal to $n/2^p$. Let σ be a nontrivial element of order two in the center of ϕ . As a σ -module, L/2L is the direct sum of trivial factors and Z_2 -group rings. Since

the action of Z_2 on its Z_2 -group ring has a unique fixed point, $\dim_{Z_2}(L/2L)^{\sigma} \ge n/2$. Now $(L/2L)^{\sigma}$ is a ϕ -module because σ is in the center of ϕ . Thus we may repeat this argument for $\phi/\langle \sigma \rangle$ and so on.

3. The main theorem

A finite 2-group all of whose elements of order two lie in its center will be called central. The main result is

Theorem 3.1. If R^n/π is a ϕ -manifold where ϕ is a central 2-group, then R^n/π is a boundary.

Corollary 3.1. If R^n/π is a ϕ -manifold where ϕ is a finite group whose Sylow 2-subgroups are central, then R^n/π is a boundary.

Proof. Let ψ be a Sylow 2-subgroup of ϕ , and let π' be its inverse image in π . The holonomy group of R^n/π' is ψ , so R^n/π' bounds by Theorem 3.1. Since the index of π' in π is odd, R^n/π' is an odd-fold covering space of R^n/π . But odd-fold covers preserve Stiefel-Whitney numbers, so R^n/π bounds as well (see Milnor & Stasheff [6]). q.e.d.

The proof of Theorem 3.1 consists in using purely algebraic facts (Propositions 3.1 and 3.2 below) concerning the cohomology of central 2-groups with coefficients in a lattice to deduce that a certain subgroup of the group of translational involutions has no stationary point. Specifically it will be shown that the assumption that there exists a stationary point implies that π contains an element of order two. The theorem then follows by contradiction and Theorem 30.1 of Conner and Floyd [3].

We turn next to the statements of Propositions 3.1 and 3.2, but postpone their proofs until these propositions have first been applied to proving Theorem 3.1.

A pure submodule A of a ϕ -module M will be said to be maximal if there exists no ϕ -module B such that $A \oplus B$ is isomorphic to a pure submodule of M.

Lemma 3.1. Every nonzero finitely generated ϕ -module contains a nonzero maximal semisimple submodule.

Proof. Obvious.

Definition 3.1. Let A be a k-dimensional semi-simple ϕ -module where ϕ is an elementary abelian 2-group of rank k. An extension

$$(5) 0 \to A \to G \to \phi \to 0$$

will be said to be proper if it can be obtained from the following construction. Let J be an isomorphism from A/2A onto ϕ . Let $s: A/2A \rightarrow A$ be a section of A/2A in A, i.e., s is an injective function such that $r \circ s = \mathrm{id}_{A/2A}$ where r: $A \to A/2A$ is the projection homomorphism. Define g in $\mathrm{Hom}_{\phi}(B_1(\phi); 1/2A)$, the group of one-dimensional ϕ -cochains with coefficients in 1/2A, by

(6)
$$g(a) = 1/2s(J^{-1}(a)).$$

Since the image of δg , the coboundary of g, is actually contained in A, δg is an element of $Z^2(\phi; A)$, the group of inhomogeneous ϕ -cocycles with coefficients in A. Thus δg determines an extension of A by ϕ . (5) is proper if it may be obtained from some such g in this way.

Proposition 3.1. Let L be a faithful ϕ -module where ϕ is an elementary abelian 2-group of rank k. Let $0 \to A \to G \to \phi \to 0$ be a proper extension, and let $i: A \to L$ be an injective homomorphism of ϕ -modules such that: (i) i(A) is maximal, and (ii) L/i(A) is semisimple. Let $0 \to L \to G' \to \phi \to 0$ be the extension determined by this change of coefficients. Then G' contains an element of order two.

Proposition 3.2. Let ϕ be a finite central 2-group, and let M be a finitely generated faithful ϕ -module. Let C be a nonzero maximal semisimple ϕ -submodule, and let $C \approx \bigoplus S_i$, i=1, k, be a decomposition of C into ϕ -irreducible direct factors. Then for each elementary abelian subgroup G of ϕ of rank at least k there exist a faithful G-submodule L of M and a semisimple G-submodule A of L such that:

- (a) A is generated (over Z) by precisely those elements of C-2C which are ϕ -invariant mod 2M;
 - (b) C splits as a G-direct sum, $A \oplus B$;
- (c) If L' and A' are the projections of L and A into M/B, then A' is maximal in L' and L'/A' is semisimple;
 - (d) $(L \cap B) \subset 2B$.

Proof of Theorem 3.1. Let $0 \to M \to \pi \to \phi \to 0$ be a torsion free Bieberbach group with ϕ central. Choose a nonzero ϕ -module C in M as in Proposition 3.2. By condition (a) of Proposition 3.2 the corresponding module A/2A represents a subgroup of $I(\pi)$. Assuming that this subgroup has a stationary point x we conclude from Lemma 1.1 that there is an elementary abelian subgroup ϕ' of ϕ which is isomorphic to A/2A via the homomorphism J. Assuming that the origin of R^n covers the fixed point, J may be written as $\rho \circ s$ where s is defined by (4). Setting $g: \phi' \to 1/2A$ by (6), we obtain a proper extension,

$$0 \to A \to G \to \phi' \to 0$$
.

Clearly the induced extension

$$0 \rightarrow A' \rightarrow G' \rightarrow \phi' \rightarrow 0$$

is proper. Hence by (c) of Proposition 3.2 and Proposition 3.1, the extension

$$0 \rightarrow L' \rightarrow G'' \rightarrow \phi' \rightarrow 0$$

contains an element of order two. Writing G'' as the cartesian product $L' \times \phi'$ with multiplication given by

(7)
$$(w, \sigma) \cdot (w', \tau) = (w + \sigma \cdot w' + \delta g(\sigma, \tau), \sigma \tau),$$

we see that the element of order two is of the form

$$(w, \sigma)$$
 where $\sigma \neq id$.

We have from (7)

$$(0, id) = (w, \sigma)^2 = (w + \sigma \cdot w + \delta g(\sigma, \sigma), id).$$

Hence $\sigma \cdot w + w = -\delta g(\sigma, \sigma)$. By condition 4) of Proposition 3.2, in L we have

$$\sigma \cdot w + w = -\delta g(\sigma, \sigma) + 2b$$
 where b is in B.

Since σ acts trivially on both $\sigma \cdot w + w$ and $\delta g(\sigma, \sigma)$, it acts trivially on b as well. This gives

$$\sigma \cdot (w - b) + (w - b) = -\delta g(\sigma, \sigma).$$

Thus $(w - b, \sigma)$ is of order two. From this contradiction we see that $I(\pi)$ has no stationary point and hence that R^n/π is a boundary. This completes the proof.

Proof of Proposition 3.1. The aim here is to locate an element γ in ϕ and an element x in L such that $\gamma \cdot x + x = \delta g(\gamma, \gamma)$. For then, viewing G' as the cartesian product $L \times \phi$ with multiplication given by

$$(v, \sigma) \cdot (w, \tau) = (v + \sigma \cdot w + \delta g(\sigma, \tau), \sigma \tau),$$

one sees that $(-x, \gamma)$ is of order two.

Since L/i(A) is semisimple for all x in L, γ in ϕ , the projection $r(\gamma \cdot x + x)$ of $\gamma \cdot x + x$ to L/2L may be viewed as an element of i(A)/2i(A). Hence there is a homomorphism

$$P: L \to \operatorname{Hom}(\phi, \phi)$$

defined by

(8)
$$P(x)(\gamma) = J(r(\gamma \cdot x + x)).$$

Lemma 3.2. In order to prove Proposition 3.1 it is sufficient to show that there exist x in L and γ in φ such that

(9)
$$P(x)(\gamma) = J(r(\delta g(\gamma, \gamma))).$$

Proof. It follows from (9) that

$$\gamma \cdot x + x = \delta g(\gamma, \gamma) + 2w$$
 for some w in L,

so that

$$\gamma \cdot (x - w) + (x - w) = \delta g(\gamma, \gamma),$$

since γ acts trivially on $\delta g(\gamma, \gamma)$.

Lemma 3.3. Let M be a faithful semisimple ϕ -module where ϕ is an elementary abelian 2-group of rank k. Then there exist vectors x_i , i = 1, k, in M and a minimal set of generators σ_i , i = 1, k, of ϕ such that

(10)
$$\sigma_i \cdot x_j = x_j, \quad i \neq j, \\ = -x_j, \quad i = j.$$

Proof. We omit the details. One proceeds by induction on k. q.e.d.

Since ϕ is elementary abelian, there are direct sum decompositions $L/i(A) \approx \bigoplus 1_i$, $i(A) \approx \bigoplus t_j$, where the 1_i 's and t_j 's are one-dimensional. Since L is faithful, $L/i(A) \oplus i(A)$ is faithful as well. Hence by reindexing if necessary, we may assume that $\bigoplus_{1,s} 1_i \oplus i(A)$ is a faithful ϕ -module where s equals the rank of the subgroup ψ of ϕ of elements which act trivially on i(A). Apply Lemma 3.3 to ψ to get vectors x_1, \dots, x_s in $\bigoplus 1_i$ and a minimal set of generators $\sigma_1, \dots, \sigma_s$ of ψ such that σ_i is "dual" to x_i in the sense of (10). Split ϕ as $\psi \times K$ where K is the kernel of the action of ϕ on $\bigoplus 1_i$. Next apply Lemma 3.3 to K to get vectors e_j , j = 1, k - s, in i(A) and a minimal set of generators τ_j , j = 1, k - s, of K such that τ_j is "dual" to e_j in the sense of (10). Note that $\sigma_i \cdot t_j = t_j$ and $\tau_j \cdot x_i = x_i$, $\forall i, j$. We intend to choose lifts u_i of the x_i 's to L such that the homomorphisms $P(u_i)$ have a particularly nice form.

Lemma 3.4. There exists lifts u_i of the x_i 's to L such that $\sigma_j \cdot u_i = u_i$ for $i \neq j$, $-u_i + w_i$ for i = j for some $w_i \in i(A) - 2i(A)$ and such that $\tau_j \cdot u_i \equiv u_i$, mod i(A) for all i, j.

Proof. Let T_i denote the ϕ -module generated by A together with an arbitrary lift of x_i to L. L/i(A) semisimple implies

$$T_i \otimes Q \approx L_i \oplus (i(A) \otimes Q),$$

where 1_i is one-dimensional. Let v_i be a Z-generator of $T_i \cap L_i$. Clearly, $\sigma_i \cdot v_i = -v_i$. Since i(A) is maximal, $(L_i \cap T_i) \oplus i(A)$ is not pure. Thus there exist $u_i \in T_i$, $a_i \in i(A)$, and $m \in Z - \{0, \pm 1\}$ such that $m \cdot u_i = v_i + a_i$ and $u_i \notin (L_i \cap T_i) \oplus i(A)$. Now

$$\sigma_i \cdot u_i = -1/mv_i + 1/m a_i = -u_i + 2/m a_i.$$

Note that $2/m a_i \in A$. In fact, $2/m a_i \in A - 2A$ for otherwise, $1/m a_i \in A$ which implies that $1/m v_i$ is in T_i , but this contradicts the fact that v_i is a Z-generator of $(L_i \cap T_i)$. Setting $w_i = 2/m a_i$ takes care of the case where

i = j. For $i \neq j$, there is a similar computation: $\tau_j \cdot u_i \equiv u_i$, mod i(A), by construction. q.e.d.

Letting ϕ^* denote the dual space of ϕ (considered as a Z_2 -vector space) and identifying $\phi^* \otimes \phi$ with $\text{Hom}(\phi, \phi)$ in the usual way, define h_i , g_j in $\text{Hom}(\phi, \phi)$ by

(11)
$$h_i = \sigma_i^* \otimes P(u_i)(\sigma_i), \ g_i = \tau_i^* \otimes J(z_i),$$

where z_i is the projection to i(A)/2i(A) of e_i .

Let F be the additive subgroup of $\text{Hom}(\phi, \phi)$ generated by the h_i 's and the g_j 's. Note that F is generated by homomorphisms which are dual to the generators σ_i and τ_j of ϕ . The importance of Lemma 3.4 is that none of the h_i 's are the zero homomorphism.

Lemma 3.5. There exist f in F and γ in $\phi - 0$ such that $f(\gamma) = \gamma$.

Proof. The lemma is a special case of the more general fact that if x_1, \dots, x_k is a basis of a Z_2 -vector space V, and if f_1, \dots, f_k are elements of $\operatorname{Hom}(V, V)$ such that $f_i(x_i) \neq 0$ for all i and $f_i(x_j) = 0$ for all $i \neq j$, then for some linear combination of the f's fixes a nonzero element a in V. We omit the details. q.e.d.

Using Lemma 3.5, let $f \in F$, $\gamma \in \phi - 0$ such that $f(\gamma) = \gamma$. Factor f as

$$(12) f = \sum h_i + \sum g_{i},$$

and remove any of the h's and g's which send γ to zero. Assuming that this has already been done we see that γ contains the factor

$$\sum \sigma_i + \sum \tau_j$$

which we write simply as $\sigma\tau$. From Lemma 3.4 and equations (8) and (11) it follows that

$$f(\gamma) = P(\sum u_i)(\sigma) + J(r(\sum e_i)),$$

where the indices i and j correspond to the indices in (12). This last equation is written more simply as

(13)
$$f(\gamma) = P(x)(\sigma) + J(r(e)).$$

By Lemma 3.2, the proof is completed with

Lemma 3.6. $P(x)(\gamma) = J(r(\delta g)(\gamma, \gamma)).$

Proof. From (6), (8), and (13), the equation $f(\gamma) = \gamma$, and the equation $s \cdot r = id_A$, mod 2A, it follows that

(14)
$$2g(\gamma) = \sigma \cdot x + x + e + 2w, \text{ where } w \in i(A).$$

Since $\gamma \cdot e = -e$ we get

(15)
$$\delta g(\gamma, \gamma) = 1/2(\tau \cdot (\sigma \cdot x + x) + \sigma \cdot x + x + 2(\gamma \cdot w + w)).$$

Since A is a direct sum of one-dimensional γ -modules, A splits as a direct sum $A^+ \oplus A^-$, where γ acts trivially on A^+ and by negation on A^- . Hence from (15) it follows that

(16)
$$\delta g(\gamma, \gamma) = (\sigma \cdot x + x)^+, \mod 2i(A).$$

The lemma now follows from (16) and the easily checked fact that $\gamma \cdot x + x = (\sigma \cdot x + x)^+$. q.e.d.

Proof of Proposition 3.2. The following fact will be needed.

Lemma 3.7. Let ϕ be a central group acting on the Q-vector space V. Suppose that V is ϕ -irreducible. If $\sigma \in \phi$ is of order 2, then σ either acts trivially on v or $\sigma \cdot v = -v$ for all $v \in V$.

Proof. Every vector space of over Q which is a Z_2 -module is isomorphic to a direct sum $V^+ \oplus V^-$, of submodules such that $v \in V^+ \Leftrightarrow \sigma \cdot v = v$, and $v \in V^- \Leftrightarrow \sigma \cdot v = -v$. Since σ is in the center of ϕ , V^+ and V^- are ϕ -modules. But V is irreducible so $V = V^+$ or $V = V^-$. q.e.d.

We next construct the module A. $(C/2C)^{\phi} \approx \bigoplus (S_i/2S_i)^{\phi}$ where by assumption $C = \bigoplus S_i \cdot S_i$ is irreducible, so by the previous lemma each element of G either acts trivially or by negation on it. Thus, if we choose a complete set of representatives of $(C/2C)^{\phi}$ in C as generated by the union of complete sets of representatives of each $(S_i/2S_i)^{\phi}$, the resulting G-module A which they generate is a direct sum of one-dimensional G-submodules and projects surjectively onto $(C/2C)^{\phi}$.

Split $M \otimes_z Q$ as $D \oplus (C \otimes Q)$. Lemma 3.7 permits us to reason exactly as in Lemma 3.3 to find a Z_2 -basis σ_i , i=1, m, of the subgroup H of G of elements which act trivially on A and ϕ -irreducible direct summands D_i , i=1, m, of D such that σ_i acts trivially on each $D_j \cap M$ excepting $D_i \cap M$ upon which it acts by negation. By our assumptions each $(D_i \cap M) \oplus C$ is not pure, so by the same arguments as in Lemma 3.3 there exists $u_j \in (D_i \oplus (C \otimes Q)) \cap M$ such that

$$\sigma_i \cdot u_j = \begin{cases} u_j, & j \neq i, \\ -u_j + w_j, & i = j, \end{cases}$$

where $w_j \in C - 2C$. Further, the vectors $\sigma_1, \dots, \sigma_m$ may be extended to a Z_2 -basis $\sigma_1, \dots, \sigma_m, \tau_1, \dots, \tau_p$ where

$$\tau_i \cdot u_j \equiv u_j, \mod C.$$

Now $w_j \in C - 2C$ implies that the projection v_j of w_j to C/2C is not zero. Since ϕ is a 2-group, the ϕ -module generated by v_j has nontrivial intersection with $(C/2C)^{\phi} - 0$. Since this module is just all ϕ -linear combinations of v_j there exists $f_i \in Z[\phi]$ such that $f_i(v_i)$ is in $(C/2C)^{\phi} - 0$. Set $y_i = f_i(u_i)$ and let

 $L = \operatorname{Span}_{Z[G]}(A \cup \{y_i's\})$. Since ϕ is central, σ_i commutes with f. Hence

(17)
$$\sigma_{j} \cdot y_{j} = f_{j}(\sigma_{j} \cdot u_{j}) = -f_{j}(u_{j}) + f_{j}(w_{j}) = -y_{j} + f_{j}(w_{j}).$$

Since $f_j(w_j)$ is a lift of $f_j(v_j)$ to C, it is a nonzero element of A, mod 2C. The same type arguments give the following equations:

(18)
$$\sigma_i \cdot y_i = y_i, i \neq j; \tau_i \cdot y_i = y_i + z_{ii},$$

where z_{ij} is also an element of $A \mod 2C$. Since each element of G acts either trivially or by pure negation on each S_i , S_i splits as $(A \cap S_i) \oplus B_i$ where B_i is any Z-complement of $A \cap S_i$. Clearly $L \cap B \subset 2B$. That A' is maximal in L' follows from (17). The semisimplicity of L'/A' follows from (17) and (18) together.

References

- [1] L. S. Charlap, Compact flat Riemannian manifolds, I, Ann. of Math. 81 (1965) 15-30.
- [2] L. S. Charlap & A. T. Vasquez, Compact flat Riemannian manifolds. II, Amer. J. Math. 87 (1965) 551-563.
- [3] P. E. Conner & E. E. Floyd, Differentiable periodic maps, Interscience, New York, 1962.
- [4] C. Curtis & I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [5] S. MacLane, Homology, Springer, New York, 1975.
- [6] J. Milnor & J. Stasheff, Characteristic classes, Princeton University Press, Princeton, 1974.
- [7] C. Sah, Abstract algebra, Academic Press, New York, 1968.
- [8] A. T. Vasquez, Flat Riemannian manifolds, J. Differential Geometry 4 (1970) 367-381.
- [9] J. Wolf, Spaces of constant curvature, Publish or Perish, Boston, 1974.

STATE UNIVERSITY OF NEW YORK, STONY BROOK